

School of Arts, Science and Commerce Department of Science B.Sc. Mathematics Semester VI Major Assignment

Important Instructions to Student:

- 1. Last date for Assignment Submission **30-May-2020**
- 2. This assignment carries major **weightage of 50 Marks**. Kindly prepare it very carefully and in a very detailed manner. For any help in this regard, kindly contact your faculties.
- 3. Front Page of Assignment should clearly include details like:
 - a. Your Name
 - **b.** UID Number
 - c. Subject
 - d. Class
 - e. Semester
 - In the event of no such information, we may not be able to assign marks for your assignment, for which responsibility lies with students.
- 4. You can write and submit assignment through any of the following options:
 - a. Handwritten Assignment Prepare softcopy of your assignment through suitable apps and send the assignment as one PDF to your respective faculty as mentioned above.
 - b. Typed Assignment Prepare Assignment with following font setting and submit the assignment to your respective faculty as mentioned above.
 - i. Font Type Times New Roman or Arial
 - ii. Headings Font Size 14
 - iii. Text (Except Heading) 12
 - iv. Normal Margin and Line Spacing maximum 1.15
- 5. After this lockdown ends, you all have to submit the physical assignment copies to your respective Faculties. So, keep the assignment carefully for submission.
- While submitting assignment through email, kindly use subject line as Name of the Programe_Name of Course/Branch_Semester_Name o the the Subject. For Example B.Tech._Mechanical_IV_Theory of Machines

REAL ANALSIS		Mode of Submission : Email
Prof:	Vardan Parmar	Email – <u>vardan.parmar@raiuniversity.edu</u>
		Subject Line: B.Sc. SEM VI Real analysis
1.	State and prove Archimedean property	
2.	Find limit of the function using definition.	
	$\lim_{x \to 2} \left(\frac{x+1}{x+2} \right)$	
3	Stat and Prove that Weierstrass Completeness Principle.	
1	Let $\lim_{x \to \infty} f(x) = I$ and $\lim_{x \to \infty} g(x) = I$ then prove that $\lim_{x \to \infty} (f(x) + g(x)) = I + I$ and	
+	$\lim_{x \to c} (f(x), g(x)) = L_1 \cdot L_2$	
5.	Define the set $a + S := \{a + s : s \in S\}$. prove that $Sup(a + S) = a + sup S$	
TOPOLOGY II Mode of Submission : Email		
Prof:	Vardan Parmar	Email – <u>vardan.parmar@raiuniversity.edu</u>
		Subject Line: B.Sc. SEM VI Topology
1.	Prove that	
	1. Arbitrary intersection of closed set is closed.	
	2. Finite union of closed set is closed.	
2.	Show that intersection of any two tonology on X is always a tonology on X	
J.	Show that intersection of any two topology of X is always a topology of X. Let \mathfrak{B} be a basis of a ponempty set $X_{-}^{T} = \{II \in X\}$ for avery $x \in II$ there exist $B \in \mathfrak{B}$ such that $x \in I$.	
4.	$B \subset U$ Prove that T is a topology on X	
5	Prove that every simple ordered set is a T_2 space in the order topology.	
COMPLEX ANALYSIS Mode of Submission : Email		
Prof :	Anjali Ladva	Email – anjali.ladva@raiuniversity.edu
		Subject Line: B.Sc. SEM VI Complex Analysis
1.	Stat and prove triangle inequality.	
2	Prove that the set of values of $log(i^2)$ is not the same as the set of values $2 log i$.	
3.	Prove that: (I) $cosh^2x - sinh^2x = 1$ (II) $sin ix = i sinh x$	
4.	1. Show that	
	$f(z) = u(x, y) + iv(x, y), z_0 = x_0 + iy_0$, and $w_0 = u_0 + iv_0$	
	Then $\lim_{x \to \infty} f(x) = w$	
	$\lim_{Z \to Z_0} J(Z) = W_0$	
	$\int if and only if \lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$	
5.	Find the general value of $\log(1 + i) + \log(1 - i)$.	
	l	
ABSTRACT ALGEBRA II Mode of Submission : Email		
Prof:	Vardan Parmar	Email – <u>vardan.parmar@raiuniversity.edu</u>
		Subject Line: B.Sc. SEM VI Abstract algebra II
1.	Prove that a finite integral domain is field.	
2.	Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Show that $\mathbb{Q}(\sqrt{2})$ is Commutative ring with unity under usual	
	addition and multiplication.	

NOTE: After completing your assignments, contact your respective faculty member and submit the assignment for assessment.